Selasa, 10 April 2012


Tugas 8 (individu)

NETWORK ID & BROADCAST ID

Mata Kuliah      : JARINGAN INFORMASI DIGITAL
Dosen Pembina : Moh. Syafi'i, S.Kom
oleh                    : MUHAMMAD FAHMI / 100213304254

Soal : 
IP ADDRES : 172.168.11.5
NET MASK : 255.255.255.240

Ditanya ?

1. Network ID
2. Broadcast ID

3. Range IP addres yang bisa dipakai ??

JAWAB :
IP ADDRES : 172.168.11.5        = 10101100.10101000.00001011.00000101
NET MASK : 255.255.255.240  = 11111111.11111111.11111111.11110000


NET ID        : 
  10101100.10101000.00001011.00000101
  11111111.11111111.11111111.11110000AND
  10101100.10101000.00001011.00000000 = 172.168.11.0 ( NET ID)

BROADCAST ID :
  10101100.10101000.00001011.00000101
  11111111.11111111.11111111.11110000
  
  00000000.00000000.00000000.00001111 OR
  10101100.10101000.00000011.00001111 = 

  172.168.11.15 (Broadcast ID)




Hasil :
Network ID    : 172.168.11.0

Broadcast ID  : 172.168.11.15
Range IP addres yang bisa dipakai = 172.168.11.1 - 172.168.11.14

  




Kamis, 22 Maret 2012


Tugas 7. 
IP Address & Subnetting
D3 PERPUSTAKAAN
Dosen Pembimbing : Moh. Safii, S.Kom
Sejarah IP Address
TCP/IP merupakan protokol resmi untuk aplikasi internet sejak tahun 1983 hingga sekarang. Dalam Protokol TCP/IP, setiap host yang terhubung ke internet harus memiliki IP Address sebagai alat pengenal host pada network. IP Address harus bersifat unik, tidak boleh ada satu IP Address yang sama dipakai oleh dua host yang berbeda. Penggunaan IP Address di seluruh dunia dikoordinasikan/dikelola oleh lembaga sentral internet yang dikenal dengan Internet Assigned Numbers Authority (IANA). IANA bekerja sama dengan lima Regional Internet Registry (RIR) mengalokasikan blok alamat IP lokal ke Internet Registries (penyedia layanan Internet) dan lembaga lainnya.
Badan-badan yang mengawal IP dibawah IANA diantaranya adalah:
1.
APNIC (Asia Pacific Network Information Centre) – kawasan Asia/Pacific.
2.
ARIN (American Registry for Internet Numbers) – kawasan Amerika Utara dan Afrika.
3.
LACNIC (Regional Latin-American and Caribbean IP Address Registry) – kawasan Amerika Latin dan beberapa kepulauan Karibia.
4.
RIPE NCC (Réseaux IP Européens) – kawasan Eropa, Asia tengah, and Afrika utara.
Perancang awal dari TCP/IP menetapkan sebuah alamat IP sebagai nomor 32-bit, dan sistem ini, yang kini bernama Internet Protocol Version 4 (IPv4), masih digunakan sampai saat ini. Namun karena pertumbuhan yang besar dari Internet dan penipisan yang terjadi pada alamat IP, maka dikembangkan sistem baru (IPv6) yang menggunakan 128 bit untuk alamat dan dikembangkan pada tahun 1995 dan terakhir oleh standar RFC 2460 pada tahun 1998.
Pengertian IP address
IP address merupakan singkatan dari Internet Protokol (IP) Address. Seperti halnya suatu alamat rumah, IP address merupakan suatu cara untuk mengetahui asal atau alamat suatu komputer berupa sistem penomoran masing-masing komputer yang bersifat unik.
3b8f57b4b8b15b2fd148ee9956205a4f_contoh-alamat-ip
Contoh IP Address
IP Addrees (Internet Protocol Address atau sering disingkat IP) adalah deretan angka biner antara 32-bit sampai 128-bit yang dipakai sebagai alamat identifikasi untuk tiap komputer host dalam jaringan Internet. Panjang dari angka ini adalah 32-bit (untuk IPv4 atau IP versi 4), dan 128-bit (untuk IPv6 atau IP versi 6) yang menunjukkan alamat dari komputer tersebut pada jaringan Internet berbasis TCP/IP.
Dengan penentuan IP address, berarti memberikan identitas yang universal pada setiap interface komputer. Setiap komputer yang terhubung ke internet paling tidak harus memiliki IP address pada setiap interfacenya. Jika sebuah komputer mepunyai lebih dari satu interface, maka diberikan dua IP address kepada komputer pada masing-masing interface yang terpasang. Jadi sebuah IP address sebenarnya tidak merujuk pada sebuah komputer, tetapi pada interface yang terpasang pada komputer tersebut.
Sistem Pengalamatan IP
Sistem pengalamatan IP ini terbagi menjadi dua, yaitu IP versi 4 (IPv4) dan IP versi 6 (IPv6). IP address memiliki dua bagian, yaitu alamat jaringan (network address) dan alamat komputer lokal (host address) dalam sebuah jaringan. Alamat jaringan digunakan oleh router untuk mencari jaringan tempat sebuah komputer lokal berada, sementara alamat komputer lokal digunakan untuk mengenali sebuah komputer pada jaringan lokal.
Perbedaan IPv4 dan IPv6
44b9b50348f8f706c3a9a49604e6d163_ipv4-vs-ipv6
de946b4f210706e56e7d07c2a5217d90_ipv4-vs-ipv6
IP Service pada IPv4 dan IPv6
ddb255db41981d01934a024e5c621853_ipv4-vs-ipv6-graphic
Alamat IP versi 4 (sering disebut dengan Alamat IPv4) adalah sebuah jenis pengalamatan jaringan yang digunakan di dalam protokol jaringan TCP/IP yang menggunakan protokol IP versi 4. Panjang totalnya adalah 32-bit, dan secara teoritis dapat mengalamati hingga 4 miliar host komputer atau lebih tepatnya 4.294.967.296 host di seluruh dunia. Bila host yang ada diseluruh dunia melebihi kuota tersebut maka dibuatlah IP versi 6 atau IPv6.
Struktur Pengalamatan IPv4
Pengalamatan IPv4 menggunakan 32 bit yang setiap bit dipisahkan dengan notasi titik.
Notasi pengalamatan IPv4 adalah sebagai berikut:
XXXXXXXX.XXXXXXXX.XXXXXXXX.XXXXXXXX
dimana setiap simbol X digantikan dengan kombinasi bit 0 dan 1.misalnya: 10000010.11001000.01000000.00000001 (dalam angka biner)
Cara penulisan lain agar mudah diingat adalah dengan bentuk 4 desimal yang dipisahkan dengan titik. Misal untuk alamat dengan kombinasi biner seperti diatas dapat dituliskan sebagai berikut: 130.200.127.254
Jenis-jenis Pengalamatan IP versi 4 (IPv4)
1. Alamat Unicast
Merupakan alamat IPv4 yang ditentukan untuk sebuah antarmuka jaringan yang dihubungkan ke sebuah internetwork IP. Alamat unicast inilah yang harus digunakan oleh semua host TCP/IP agar dapat saling terhubung. Komponen alamat ini terbagi menjadi dua jenis, yakni alamat host (host identifier) dan alamat jaringan (network identifier). Alamat unicast menggunakan kelas A, B, dan C, sehingga ruang alamatnya adalah dari 1.x.y.z hingga 223.x.y.z. Sebuah alamat unicast dibedakan dengan alamat lainnya dengan menggunakan skema subnet mask.
2.Alamat Broadcast
Alamat broadcast untuk IP versi 4 digunakan untuk menyampaikan paket-paket data “satu-untuk-semua”. Jika sebuah host pengirim yang hendak mengirimkan paket data dengan tujuan alamat broadcast, maka semua node yang terdapat di dalam segmen jaringan tersebut akan menerima paket tersebut dan memprosesnya. Berbeda dengan alamat IP unicast atau alamat IP multicast, alamat IP broadcast hanya dapat digunakan sebagai alamat tujuan saja, sehingga tidak dapat digunakan sebagai alamat sumber.
Ada empat buah jenis alamat IP broadcast, yakni network broadcast, subnet broadcast, all-subnets directed broadcast, dan Limited Broadcast. Untuk setiap jenis alamat broadcast tersebut, paket IP broadcast akan dialamatkan kepada lapisan antarmuka jaringan dengan menggunakan alamat broadcast yang dimiliki oleh teknologi antarmuka jaringan yang digunakan.
3.Alamat Multicast
Merupakan alamat IPv4 yang didesain agar diproses oleh satu atau beberapa node dalam segmen jaringan yang sama atau berbeda. Alamat multicast digunakan dalam komunikasi one-to-many, digunakan pada alamat kelas D dan E.
Kelas-kelas dalam IPv4
d1ca4be02fd18c9f2db717fb7b4e84ef_ipv4-ip_address_classes
Kelas A
Bit pertama IP address kelas A adalah 0, dengan panjang net ID 8 bit dan panjang host ID 24 bit. Byte pertama IP address kelas A mempunyai range dari 0-127. Jadi pada kelas A terdapat 127 network dengan tiap network dapat menampung sekitar 16 juta host (255×255×255). IP address kelas A diberikan untuk jaringan dengan jumlah host yang sangat besar, IP kelas ini dapat dilukiskan pada gambar berikut:
acb1dbacbbd5c6bdf9560d14eb5e7b7f_class-a
• Format : 0nnnnnnn.hhhhhhhh.hhhhhhhh.hhhhhhhh
• Bit pertama : 0
• Panjang NetID : 8 bit
• Panjang HostID : 24 bit
• Byte pertama : 0 – 127
• Jumlah Kelas : 128 (2 7) (0 dan 127 dicadangkan)
• Range IP : 1.xxx.xxx.xxx sampai 126.xxx.xxx.xxx
• Jumlah Host : 16.777.214 (2^24-2)IP pada setiap Kelas A
• Dekripsi : Diberikan untuk jaringan dengan jumlah host yang besar
Kelas B
Dua bit IP address kelas B selalu diset 10 sehingga byte pertamanya selalu bernilai antara 128-191. Network ID adalah 16 bit pertama dan 16 bit sisanya adalah host ID sehingga jika ada komputer mempunyai IP address 192.168.26.161, network ID = 192.168 dan host ID = 26.161. IP address kelas B ini mempunyai range IP dari 128.0.xxx.xxx sampai 191.155.xxx.xxx, yakni berjumlah 65.255 network dengan jumlah host tiap network 255 x 255 host atau sekitar 65 ribu host.
62792c8a0788ede084fed3643c837dcc_class-b
• Format : 10nnnnnn.nnnnnnnn.hhhhhhhh.hhhhhhhh
• Bit pertama : 10
• Panjang NetID : 16 bit
• Panjang HostID : 16 bit
• Byte pertama : 128 – 191
• Jumlah Kelas : 16.384 (214)
• Range IP : 128.0.xxx.xxx sampai 191.255.xxx.xxx
• Jumlah Host : 65.534 (2^16-2)IP Address pada setiap Kelas B
• Deskripsi : Dialokasikan untuk jaringan besar dan sedang
Kelas C
IP address kelas C mulanya digunakan untuk jaringan berukuran kecil seperti LAN. Tiga bit pertama IP address kelas C selalu diset 111. Network ID terdiri dari 24 bit dan host ID 8 bit sisanya sehingga dapat terbentuk sekitar 2 juta network dengan masing-masing network memiliki 256 host.
067c9a1d6d030d15e9877978161df805_class-c
• Format : 110nnnnn.nnnnnnnn.nnnnnnnn.hhhhhhhh
• Bit pertama : 110
• Panjang NetID : 24 bit
• Panjang HostID : 8 bit
• Byte pertama : 192 – 223
• Jumlah Kelas : 2.097.152 (221)
• Range IP : 192. 0 . 0 .xxx sampai 223.255.255.xxx
• Jumlah Host : 254 (28 - 2)IP Address pada setiap Kelas C
• Deskripsi : Digunakan untuk jaringan berukuran kecil
Kelas D
IP address kelas D digunakan untuk keperluan multicasting. 4 bit pertama IP address kelas D selalu diset 1110 sehingga byte pertamanya berkisar antara 224-247, sedangkan bit-bit berikutnya diatur sesuai keperluan multicast group yang menggunakan IP address ini. Dalam multicasting tidak dikenal istilah network ID dan host ID.
• Format : 1110mmmm.mmmmmmm. mmmmmmm. Mmmmmmm
• Bit pertama : 1110 – 11110111
• Bit multicast : 28 bit
• Byte inisial : 224 – 239
• Deskripsi : Kelas D digunakan untuk keperluan IP multicast (RFC 1112)
Kelas E
IP address kelas E tidak diperuntukkan untuk keperluan umum. 4 bit pertama IP address kelas ini diset 1111 sehingga byte pertamanya berkisar antara 248-255.
• Format : 1111rrrr.rrrrrrrr. rrrrrrrr. Rrrrrrrr
• Bit pertama : 1111
• Bit cadangan : 28 bit
• Byte inisial : 240 – 255
• Deskripsi : Kelas E adalah kelas yang dicadangkan untuk keperluan eksperimental (research).
Penggunaan alamat IP sekarang sudah tidak menggunakan kelas alamat lagi karena alamat yang dibagi kedalam kelas-kelas seperti di atas sudah tidak mencukupi kebutuhan yang ada saat ini, di saat penggunaan Internet yang semakin meluas. Alamat IPv6 tidak menggunakan kelas-kelas seperti alamat IPv4. Alamat yang dibuat tanpa mempedulikan kelas ini disebut juga dengan Classless Address.
Jenis-jenis Alamat IP
Jika ada sebuah intranet tidak yang terkoneksi ke internet, semua alamat IP dapat digunakan. Jika koneksi dilakukan secara langsung (dengan menggunakan teknik routing) atau secara tidak langsung (dengan menggunakan proxy server), maka ada dua jenis alamat yang dapat digunakan di dalam internet, yaitu public address (alamat publik) dan private address (alamat pribadi).
1.Alamat Publik
Merupakan IP yg digunakan untuk jaringan internet/keluar, biasanya diberikan oleh ISP, agar diketahui kemana data akan dikirimkan. Contoh IP publik : 210.123.123.123
2.Alamat Privat
IP Privat dapat digunakan dengan bebas tetapi tidak dikenal pada jaringan internet global. Karena itu biasa dipergunakan pada jaringan tertutup yang tidak terhubung ke internet. Misalnya jaringan komputer ATM.
Yang termasuk IP private adalah yang masuk dalam kelompok berikut :
10.0.0.1 s/d 10.255.255.254
172.16.0.1 s/d 172.31.255.254
192.168.0.1 s/d 192.168.255.254
Format Paket IPv4
Paket-paket data dalam protokol IP dikirimkan dalam bentuk datagram. Sebuah datagram IP terdiri atas header IP dan muatan IP (payload). Header IP menyediakan dukungan untuk memetakan jaringan (routing), identifikasi muatan IP, ukuran header IP dan datagram IP, dukungan fragmentasi, dan juga IP Options. Sedangkan payload IP berisi informasi yang dikirimkan. Payload IP memiliki ukuran bervariasi, berkisar dari 8 byte hingga 65515 byte.
Sebelum dikirimkan di dalam saluran jaringan, datagram IP akan “dibungkus” (encapsulation) dengan header protokol lapisan antarmuka jaringan dan trailer-nya, untuk membuat sebuah frame jaringan. Setiap datagram terdiri dari beberapa field yang memiliki fungsi tersendiri dan memiliki informasi yang berbeda-beda.
IPv4 Packet Header
c993da773a678504ad797828016a48d4_header
a. Version : menunjukkan versi IP dari paket tersebut. Field sebesar 4-bit tersebut berisi 0100 mengindikasikan versi 4 (IPv4) atau 0110 mengindikasikan versi 6 (IPv6).
b. Internet Header Length : digunakan untuk mengindikasikan ukuran header IP.
c. Type of Service : field ini digunakan untuk menentukan kualitas transmisi dari sebuah datagram IP.
d. Total Length : merupakan panjang total dari datagram IP, yang mencakup header IP dan muatannya.
e. Identification : digunakan untuk mengidentifikasikan sebuah paket IP tertentu yang akan di fragmentasi.
f. Flags : berisi dua buah flag yang berisi apakah sebuah datagram IP mengalami fragmentasi atau tidak.
- Bit 0 = reserved, diisi 0.
- Bit 1 = bila 0 bisa difragmentasi, bila 1 tidak dapat difragmentasi.
- Bit 1 = bila 0 fragmentasi berakhir, bila 1 ada fragmentasi lagi.
g. Fragment Offset : digunakan untuk mengidentifikasikan offset di mana fragmen yang bersangkutan dimulai, dihitung dari permulaan muatan IP yang belum dipecah.
h. Time to Live : digunakan untuk mengidentifikasikan berapa banyak saluran jaringan di mana sebuah datagram IP dapat berjalan-jalan sebelum sebuah router mengabaikan datagram tersebut.
i. Protocol : digunakan untuk mengidentifikasikan jenis protokol lapisan yang lebih tinggi yang dikandung oleh muatan IP.
j. Header Checksum : field ini berguna hanya untuk melakukan pengecekan integritas terhadap header IP.
k. Source IP Address : mengandung alamat IP dari sumber host yang mengirimkan datagram IP tersebut.
l. Destination IP Address : mengandung alamat IP tujuan kemana datagram IP tersebut akan disampaikan.
Alamat IP versi 6
76e38c42e1fc0b724347357f603d676c_ipv6figure2
IPv6 Figure
Pada IPv6, panjang alamat terdiri dari 128 bit sedangkan IPv4 hanya 32 bit. IPv6 mampu menyediakan alamat sebanyak 2^128 [2 pangkat 128] atau 3X10^38 alamat.
Struktur Pengalamatan IPv6
Notasi alamat IPv6 adalah sebagai berikut:
X:X:X:X:X:X:X:X
Dalam bentuk biner ditulis sebagai berikut:
1111111001111000:0010001101000100:1011111001000001:1011110011011010:
0100000101000101:0000000000000000:0000000000000000:0011101000000000
Agar lebih mudah diingat setiap simbol X digantikan dengan kombinasi 4 bilangan heksadesimal dipisahkan dengan simbol titik dua [:].
Untuk contoh diatas dapat ditulis sbb : FE78:2344:BE43:BCDA:4145:0:0:3A
sistem pengalamatan IPv6 dapat disederhanakan jika terdapat berturut-turut beberapa angka “0″. Contohnya untuk notasi seperti diatas dapat ditulis:
FE78:2344:BE43:BCDA:4145:0:0:3A ——-> FE78:2344:BE43:BCDA:4145::3A
Jenis-jenis Pengalamatan IP versi 6 (IPv6)
IPv6 menyediakan 3 jenis pengalamatan, yaitu: Unicast, Anycast dan Multicast.
A. Unicast
Alamat yang menunjuk pada sebuah alamat antarmuka atau host, digunakan untuk komunikasi satu lawan satu.
Unicast dibagi lagi menjadi beberapa jenis, diantaranya:
- alamat link local adalah alamat yang digunakan di dalam satu link yaitu jaringan local yang saling tersambung dalam satu level.
- alamat Site local setara dengan alamat privat, yang dipakai terbatas di dalam satu site sehingga terbatas penggunaannya hanya didalam satu site sehingga tidak dapat digunakan untuk mengirimkan alamat diluar site ini.
- alamat global adalah alamat yang dipakai, misalnya untuk Internet Service Provider.
B. Anycast
Alamat yang menunjukkan beberapa interface (biasanya node yang berbeda). Paket yang dikirimkan ke alamat ini akan dikirimkan ke salah satu alamat antarmuka yang paling dekat dengan router. Alamat anycast tidak mempunyai alokasi khusus, karena jika beberapa node/interface diberikan prefix yang sama maka alamat tersebut sudah merupakan alamat anycast.
C. Multicast
Alamat yang menunjukkan beberapa interface (biasanya untuk node yang berbeda). Paket yang dikirimkan ke alamat ini maka akan dikirimkan ke semua interface yang ditunjukkan oleh alamat ini. Alamat multicast ini didesain untuk menggantikan alamat broadcast pada IPv4 yang banyak mengkonsumsi bandwidth.
Subnetting
Sebelum membahas tentang subnetting kita akan membahas tentang cara menghitung IP address, dari contoh ini kita juga akan mengetahui cara menghitung subnet mask.
Contoh cara menghitung untuk prefix lebih dari atau sama dengan 24 (/24):
Case 1 : 192.168.10.30/26
1. 32 – 26 = 6
Angka 32 didapat dari total bit untuk IPV4, sedangkan 26 merupakan prefix pada soal diatas.
2. 26 = 64
Angka 2 merupakan angka default, sedangkan angka 6 merupakan hasil pengurangan yang didapat dari point no. 1.
3. Akan didapat net id = 0, 64, 128, 192
Kelipatan 64 ini didapat dari point no. 2.
4. Akan didapat broadcast id = 63, 127, 191, 255
Untuk broadcast pun sama, merujuk pada point no. 2, jadi menggunakan kelipatan 64.
5. 30 berada pada range 0 dan 63
Angka 0 didapat dari point no.3 sedangkan angka 63 didapat dari point no. 4.
6. Untuk subnet mask, cukup dengan 256 – 64 = 192
Angka 256 didapat dari jumlah maksimum tiap oktet, yaitu 2
8 = 256, sedangkan angka 64 merupakan angka yang didapat pada point no. 2.
7. Sehingga didapat
Network id = 192.168.10.0
Broadcast id = 192.168.10.63
Range ip = 192.168.10.1 – 192.168.10.62
Subnet mask = 255.255.255.192
Tentang Subnetting
Untuk beberapa alasan yang menyangkut efisiensi IP Address, mengatasi masalah topologi network dan organisasi, network administrator biasanya melakukan subnetting. Esensi dari subnetting adalah “memindahkan” garis pemisah antara bagian network dan bagian host dari suatu IP Address. Beberapa bit dari bagian host dialokasikan menjadi bit tambahan pada bagian network. Address satu network menurut struktur baku dipecah menjadi beberapa subnetwork. Cara ini menciptakan sejumlah network tambahan, tetapi mengurangi jumlah maksimum host yang ada dalam tiap network tersebut.
Suatu subnet didefinisikan dengan mengimplementasikan masking bit (subnet mask ) kepada IP Address. Struktur subnet mask sama dengan struktur IP Address, yakni terdiri dari 32 bit yang dibagi atas 4 segmen.
Default Subnet Mask
Class A - 255.0.0.0 - 11111111.00000000.00000000.00000000
Class B - 255.255.0.0 - 11111111.11111111.00000000.00000000
Class C - 255.255.255.0 - 11111111.11111111.11111111.00000000
Contoh Subnetting
f7846dbec0681c0a76e55ae8383b1cc0_subnetting
Keterangan gambar:
• Jaringan dengan satu alamat kelas B tetapi memiliki lebih dari satu jaringan fisik
• Hanya router lokal (R1) yang mengetahui adanya beberapa jaringan fisik
• Router yang berada di Internet (in the rest of Internet) merutekan seluruh trafik ke jaringan di atas seolah-olah jaringan tersebut hanya terdiri dari satu buah jaringan
• Router lokal menggunakan oktet ke-3 untuk membedakan masing-masing jaringan
Contoh alamat tanpa subnetting dan dengan subnetting
f8bea100cd53d8dd72544e7184bb0893_alamat-subnet
Menentukan Kelompok Subnet
Sebagai contoh : IP address 130.200.0.0 (100000010.11001000.00000000.00000000) dengan default subnet mask 255.255.0.0 Untuk mempelajari subnetting sekarang misalnya kita ingin memiliki 2 network ID dari IP address yang telah kita miliki. Untuk itu kita Mask 2 bit dari host ID tersebut, maka sekarang kita memiliki empat kombinasi 00, 01, 10, dan 11 tetapi karena 00 dan 11 semuanya 0 atau semua 1 yang menurut peraturan IP address tidak diizinkan, maka tinggal 2 kombinasi 01 dan 10 saja yang bisa dipakai untuk subnet.
Sekarang perhatikan apa yang terjadi dengan default subnet mask 255.255.0.0 atau 11111111.11111111.00000000.00000000 dimana 2 bit teratas host ID diselubung (mask) untuk menjadi bagian dari network ID. Subnet mask yang baru sekarang menjadi 255.255.192.0
Dengan demikian kita telah membuat dua network ID baru
10000010.11001000.01XXXXXX.XXXXXXXX
dan
10000010.11001000.10XXXXXX.XXXXXXXX
dengan subnet mask baru :
11111111.11111111.11000000.00000000 atau 255.255.192.0
dimana X adalah angka 0 atau 1 untuk membuat host ID yang memenuhi peraturan-peraturan IP address. Oleh sebab itu kelompok IP address dibawah ini tersedia untuk dua bit yang diselubung (mask).
Kelompok pertama adalah :
10000010.11001000.01000000.00000001 atau 130.200.64.1
sampai
10000010.11001000.10000000.00000001 atau 130.200.127.254
kelompok kedua adalah :
10000010.11001000.10000000.00000001 atau 130.200.128.1
sampai
10000010.11001000.10111111.11111110 atau 130.200.191.254
selain dengan menggunakan cara diatas untuk menentukan kelompok subnet, ada cara yang lebih singkat yang dapat kita lakukan, sebagai berikut :
Misalnya kita menggunakan kelas B network ID 130.200.0.0 dengan subnet mask 255.255.221.0 dimana oktet ketiga diselubung dengan 224. Hitung dengan rumus 256-224 = 32. Maka kelompok subnet yang dapat dipakai adalah kelipatan 32 yaitu 32, 64, 128, 160, dan 192.
Dengan demikian kelompok IP adess yang dapat dipakai adalah :
130.200.32.1 sampai 130.200.63.254
130.200.64.1 sampai 130.200.95.254
130.200.96.1 sampai 130.200.127.254
130.200.128.1 sampai 130.200.159.254
130.200.160.1 sampai 130.200.191.254
130.200.192.1 sampai 130.200.223.254
Disamping penulisan IP address yang umum, dikenal pula penulisan IP address dengan notasi yang lebih singkat seperti dibawah ini :
IP address 130.200.10.1 dengan subnet mask 255.255.0.0 dapat ditulis secara singkat sebagai 130.200.10.1/16 Angka 16 dibelakang garis miring menandakan bahwa 16 bit dari subnet mask diselubung dengan angka biner 1, yaitu
11111111.11111111.00000000.00000000
Notasi penulisan singkat ini juga berlaku untuk IP address yang menggunakan metode subneting seperti contoh dibawah ini :
IP address 172.16.10.1 dengan subnet mask 255.255.255.0 dapat ditulis secara singkat sebagai 172.16.10.1/24. Angka 24 dibelakang garis miring menandakan bahwa 24 bit dari subnet mask diselubung dengan angka biner 1, yaitu
1111111.11111111.11111111.00000000 atau 255.255.255.0
Dari penjelasan dan contoh diatas, kita telah mempelajari bahwa dengan subnetting, Kita dapat menyelubung dua atau lebih bit-bit host ID selama masih tersedia bit yang dapat diselubung. Semakin banyak bit yang diselubung, semakin banyak pula network ID yang dapat kita buat. Namun demikian jumlah host ID-nya akan berkurang seperti pada tabel berikut ini.
4d18bd16731a657433f903d9cf50343e_tabel-sub
Menghitung Jumlah Subnet dan Host
• Jumlah subnet = 2n-2
– n = jumlah bit yang melebihi default subnet mask
• Jumlah total host = Jumlah subnet x jumlah host dalam setiap subnet
• Subnet dengan semua “1” atau “0” dilarang
• Host address yang sudah direserve : “0” semua (network ID) dan “1” semua (broadcast address)
Contoh
10001100.10110011.11011100.11001000 (140.179.220.200) IP Address
11111111.11111111.11100000.00000000 (255.255.224.000) Subnet Mask
Pada contoh di atas digunakan 3 bit tambahan untuk subnet mask.
Maka ada 23-2 = 6 subnet yang masing-masing berisi 213-2=8190 host
- Host addres yang dapat di-assign pada setiap subnet adalah yang berada di antara subnet address dan broadcast address
10001100.10110011.11000000.00000000 (140.179.192.000) Subnet Address
10001100.10110011.11011111.11111111 (140.179.223.255) Broadcast Address
Masing-masing subnet adalah :
- 10001100.10110011.00100000.00000000 : subnet 1 (140.179.32.0)
- 10001100.10110011. 01000000.00000000 : subnet 2 (140.179.64.0)
- 10001100.10110011. 01100000.00000000 : subnet 3 (140.179.96.0)
- 10001100.10110011. 10000000.00000000 : subnet 4 (140.179.128.0)
- 10001100.10110011. 10100000.00000000 : subnet 5 (140.179.160.0)
- 10001100.10110011. 11000000.00000000 : subnet 6 (140.179.192.0)
- 10001100.10110011.00000000.00000000 : dilarang (subnet id 0 semua)
- 10001100.10110011. 11100000.00000000 : dilarang (net id 1 semua)
Jumlah total host yang mungkin adalah 6×8190 = 49140
Credits:
telecom.ee.itb.ac.id/~tutun/ET5044/0405/5.ppt
Google Images
.

Selasa, 06 Maret 2012


TUGAS 6 

"JARINGAN INFORMASI DIGITAL" Pra UTS

Oleh : Muhammad Fahmi / 100213304254

Request artikel untuk membantu cewek saya yang memang lagi membahas tentang protokol jaringan jadi saya upload saja diblog ini. Mungkin dari rekan-rekan blogger juga ada yang lagi membutuhkan juga. jadi langsung saja ke pembahasan mengenai protokol jaringan komputer.

Protokol adalah sebuah aturan atau standar yang mengatur atau mengijinkan terjadinya hubungan, komunikasi, dan perpindahan data antara dua atau lebih titik komputer. Protokol dapat diterapkan pada perangkat keras, perangkat lunak atau kombinasi dari keduanya. Pada tingkatan yang terendah, protokol mendefinisikan koneksi perangkat keras. Protocol digunakan untuk menentukan jenis layanan yang akan dilakukan pada internet.


TCP/IP (singkatan dari Transmission Control Protocol/Internet Protocol)

Adalah standar komunikasi data yang digunakan oleh komunitas internet dalam proses tukar-menukar data dari satu komputer ke komputer lain di dalam jaringan Internet. Protokol ini tidaklah dapat berdiri sendiri, karena memang protokol ini berupa kumpulan protokol (protocol suite). Protokol ini juga merupakan protokol yang paling banyak digunakan saat ini. Data tersebut diimplementasikan dalam bentuk perangkat lunak (software) di sistem operasi. Istilah yang diberikan kepada perangkat lunak ini adalah TCP/IP stack

Protokol TCP/IP dikembangkan pada akhir dekade 1970-an hingga awal 1980-an sebagai sebuah protokol standar untuk menghubungkan komputer-komputer dan jaringan untuk membentuk sebuah jaringan yang luas (WAN). TCP/IP merupakan sebuah standar jaringan terbuka yang bersifat independen terhadap mekanisme transport jaringan fisik yang digunakan, sehingga dapat digunakan di mana saja. Protokol ini menggunakan skema pengalamatan yang sederhana yang disebut sebagai alamat IP (IP Address) yang mengizinkan hingga beberapa ratus juta komputer untuk dapat saling berhubungan satu sama lainnya di Internet. Protokol ini juga bersifat routable yang berarti protokol ini cocok untuk menghubungkan sistem-sistem berbeda (seperti Microsoft Windows dan keluarga UNIX) untuk membentuk jaringan yang heterogen.

Protokol TCP/IP selalu berevolusi seiring dengan waktu, mengingat semakin banyaknya kebutuhan terhadap jaringan komputer dan Internet. Pengembangan ini dilakukan oleh beberapa badan, seperti halnya Internet Society (ISOC), Internet Architecture Board (IAB), dan Internet Engineering Task Force (IETF). Macam-macam protokol yang berjalan di atas TCP/IP, skema pengalamatan, dan konsep TCP/IP didefinisikan dalam dokumen yang disebut sebagai Request for Comments (RFC) yang dikeluarkan oleh IETF.

Protokol Komunikasi TCP/IP
Pada TCP/IP terdapat beberapa protokol sub yang menangani masalah komunikasi antar komputer. TCP/IP merngimplemenasikan arsitektur berlapis yang terdiri atas empat lapis, diantaranya adalah :

   1. Protokol lapisan aplikasi : bertanggung jawab untuk menyediakan akses kepada aplikasi terhadap layanan jaringan TCP/IP. Protokol ini mencakup protokol Dynamic Host Configuration Protocol (DHCP), Domain Name System (DNS), Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), Telnet, Simple Mail Transfer Protocol (SMTP), Simple Network Management Protocol (SNMP), dan masih banyak protokol lainnya. Dalam beberapa implementasi stack protokol, seperti halnya Microsoft TCP/IP, protokol-protokol lapisan aplikasi berinteraksi dengan menggunakan antarmuka Windows Sockets (Winsock) atau NetBIOS over TCP/IP (NetBT).

   2. Protokol lapisan antar-host : berguna untuk membuat komunikasi menggunakan sesi koneksi yang bersifat connection-oriented atau broadcast yang bersifat connectionless. Protokol dalam lapisan ini adalah Transmission Control Protocol (TCP) dan User Datagram Protocol (UDP).
   3. Protokol lapisan internetwork : bertanggung jawab untuk melakukan pemetaan (routing) dan enkapsulasi paket-paket data jaringan menjadi paket-paket IP. Protokol yang bekerja dalam lapisan ini adalah Internet Protocol (IP), Address Resolution Protocol (ARP), Internet Control Message Protocol (ICMP), dan Internet Group Management Protocol (IGMP).
   4. Protokol lapisan antarmuka jaringan : bertanggung jawab untuk meletakkan frame-frame jaringan di atas media jaringan yang digunakan. TCP/IP dapat bekerja dengan banyak teknologi transport, mulai dari teknologi transport dalam LAN (seperti halnya Ethernet dan Token Ring), MAN dan WAN (seperti halnya dial-up modem yang berjalan di atas Public Switched Telephone Network (PSTN), Integrated Services Digital Network (ISDN), serta Asynchronous Transfer Mode (ATM))


 UDP ( User Datagram Protokol)
UDP, singkatan dari User Datagram Protocol, adalah salah satu protokol lapisan transpor TCP/IP yang mendukung komunikasi yang tidak andal (unreliable), tanpa koneksi (connectionless) antara host-host dalam jaringan yang menggunakan TCP/IP. Protokol ini didefinisikan dalam RFC 768.

UDP memiliki karakteristik-karakteristik berikut:

* Connectionless (tanpa koneksi): Pesan-pesan UDP akan dikirimkan tanpa harus dilakukan proses negosiasi koneksi antara dua host yang hendak berukar informasi.
* Unreliable (tidak andal): Pesan-pesan UDP akan dikirimkan sebagai datagram tanpa adanya nomor urut atau pesan acknowledgment. Protokol lapisan aplikasi yang berjalan di atas UDP harus melakukan pemulihan terhadap pesan-pesan yang hilang selama transmisi. Umumnya, protokol lapisan aplikasi yang berjalan di atas UDP mengimplementasikan layanan keandalan mereka masing-masing, atau mengirim pesan secara periodik atau dengan menggunakan waktu yang telah didefinisikan.
* UDP menyediakan mekanisme untuk mengirim pesan-pesan ke sebuah protokol lapisan aplikasi atau proses tertentu di dalam sebuah host dalam jaringan yang menggunakan TCP/IP. Header UDP berisi field Source Process Identification dan Destination Process Identification.
* UDP menyediakan penghitungan checksum berukuran 16-bit terhadap keseluruhan pesan UDP.

UDP tidak menyediakan layanan-layanan antar-host berikut:

* UDP tidak menyediakan mekanisme penyanggaan (buffering) dari data yang masuk ataupun data yang keluar. Tugas buffering merupakan tugas yang harus diimplementasikan oleh protokol lapisan aplikasi yang berjalan di atas UDP.
* UDP tidak menyediakan mekanisme segmentasi data yang besar ke dalam segmen-segmen data, seperti yang terjadi dalam protokol TCP. Karena itulah, protokol lapisan aplikasi yang berjalan di atas UDP harus mengirimkan data yang berukuran kecil (tidak lebih besar dari nilai Maximum Transfer Unit/MTU) yang dimiliki oleh sebuah antarmuka di mana data tersebut dikirim. Karena, jika ukuran paket data yang dikirim lebih besar dibandingkan nilai MTU, paket data yang dikirimkan bisa saja terpecah menjadi beberapa fragmen yang akhirnya tidak jadi terkirim dengan benar.
* UDP tidak menyediakan mekanisme flow-control, seperti yang dimiliki oleh TCP.


PENGGUNAAN UDP
UDP sering digunakan dalam beberapa tugas berikut:

* Protokol yang "ringan" (lightweight): Untuk menghemat sumber daya memori dan prosesor, beberapa protokol lapisan aplikasi membutuhkan penggunaan protokol yang ringan yang dapat melakukan fungsi-fungsi spesifik dengan saling bertukar pesan. Contoh dari protokol yang ringan adalah fungsi query nama dalam protokol lapisan aplikasi Domain Name System.
* Protokol lapisan aplikasi yang mengimplementasikan layanan keandalan: Jika protokol lapisan aplikasi menyediakan layanan transfer data yang andal, maka kebutuhan terhadap keandalan yang ditawarkan oleh TCP pun menjadi tidak ada. Contoh dari protokol seperti ini adalah Trivial File Transfer Protocol (TFTP) dan Network File System (NFS)
* Protokol yang tidak membutuhkan keandalan. Contoh protokol ini adalah protokol Routing Information Protocol (RIP).
* Transmisi broadcast: Karena UDP merupakan protokol yang tidak perlu membuat koneksi terlebih dahulu dengan sebuah host tertentu, maka transmisi broadcast pun dimungkinkan. Sebuah protokol lapisan aplikasi dapat mengirimkan paket data ke beberapa tujuan dengan menggunakan alamat multicast atau broadcast. Hal ini kontras dengan protokol TCP yang hanya dapat mengirimkan transmisi one-to-one. Contoh: query nama dalam protokol NetBIOS Name Service.

PESAN UDP
UDP, berbeda dengan TCP yang memiliki satuan paket data yang disebut dengan segmen, melakukan pengepakan terhadap data ke dalam pesan-pesan UDP (UDP Messages). Sebuah pesan UDP berisi header UDP dan akan dikirimkan ke protokol lapisan selanjutnya (lapisan internetwork) setelah mengepaknya menjadi datagram IP. Enkapsulasi terhadap pesan-pesan UDP oleh protokol IP dilakukan dengan menambahkan header IP dengan protokol IP nomor 17 (0x11). Pesan UDP dapat memiliki besar maksimum 65507 byte: 65535 (216)-20 (ukuran terkecil dari header IP)-8 (ukuran dari header UDP) byte. Datagram IP yang dihasilkan dari proses enkapsulasi tersebut, akan dienkapsulasi kembali dengan menggunakan header dan trailer protokol lapisan Network Interface yang digunakan oleh host tersebut.

Dalam header IP dari sebuah pesan UDP, field Source IP Address akan diset ke antarmuka host yang mengirimkan pesan UDP yang bersangkutan; sementara field Destination IP Address akan diset ke alamat IP unicast dari sebuah host tertentu, alamat IP broadcast, atau alamat IP multicast.

PORT UDP
Seperti halnya TCP, UDP juga memiliki saluran untuk mengirimkan informasi antar host, yang disebut dengan UDP Port. Untuk menggunakan protokol UDP, sebuah aplikasi harus menyediakan alamat IP dan nomor UDP Port dari host yang dituju. Sebuah UDP port berfungsi sebagai sebuah multiplexed message queue, yang berarti bahwa UDP port tersebut dapat menerima beberapa pesan secara sekaligus. Setiap port diidentifikasi dengan nomor yang unik, seperti halnya TCP, tetapi meskipun begitu, UDP Port berbeda dengan TCP Port meskipun memiliki nomor port yang sama. Tabel di bawah ini mendaftarkan beberapa UDP port yang telah dikenal secara luas.

Nomor Port UDP Digunakan oleh
53 Domain Name System (DNS) Name Query
67 BOOTP client (Dynamic Host Configuration Protocol [DHCP])
68 BOOTP server (DHCP)
69 Trivial File Transfer Protocol (TFTP)
137 NetBIOS Name Service
138 NetBIOS Datagram Service
161 Simple Network Management Protocol (SNMP)
445 Server Message Block (SMB)
520 Routing Information Protocol (RIP)
1812/1813 Remote Authentication Dial-In User Service (RADIUS)


 Domain Name System (DNS)
Domain Name System (DNS) adalah distribute database system yang digunakan untuk pencarian nama komputer (name resolution) di jaringan yang mengunakan TCP/IP (Transmission Control Protocol/Internet Protocol). DNS biasa digunakan pada aplikasi yang terhubung ke Internet seperti web browser atau e-mail, dimana DNS membantu memetakan host name sebuah komputer ke IP address. Selain digunakan di Internet, DNS juga dapat di implementasikan ke private network atau intranet dimana DNS memiliki keunggulan seperti:
1. Mudah, DNS sangat mudah karena user tidak lagi direpotkan untuk mengingat IP address sebuah komputer cukup host name (nama Komputer).
2. Konsisten, IP address sebuah komputer bisa berubah tapi host name tidak berubah.
3. Simple, user hanya menggunakan satu nama domain untuk mencari baik di Internet maupun di Intranet.


Struktur DNS
Domain Name Space merupakan sebuah hirarki pengelompokan domain berdasarkan nama, yang terbagi menjadi beberapa bagian diantaranya:

Root-Level Domains
Domain ditentukan berdasarkan tingkatan kemampuan yang ada di struktur hirarki yang disebut dengan
level. Level paling atas di hirarki disebut dengan root domain. Root domain di ekspresikan berdasarkan periode dimana lambang untuk root domain adalah (“.”).

Top-Level Domains
Pada bagian dibawah ini adalah contoh dari top-level domains:
a) .com Organisasi Komersial
b) .edu Institusi pendidikan atau universitas
c) .org Organisasi non-profit
d) .net Networks (backbone Internet)
e) .gov Organisasi pemerintah non militer
f) .mil Organisasi pemerintah militer
g) .num No telpon
h) .arpa Reverse DNS
i) .xx dua-huruf untuk kode Negara (id:indonesia.my:malaysia,au:australia)

Top-level domains dapat berisi second-level domains dan hosts.

Second-Level Domains
Second-level domains dapat berisi host dan domain lain, yang disebut dengan subdomain. Untuk contoh:
Domain Bujangan, bujangan.com terdapat komputer (host) seperti server1.bujangan.com dan subdomain training.bujangan.com. Subdomain training.bujangan.com juga terdapat komputer (host) seperti client1.training.bujangan.com.

Host Names
Domain name yang digunakan dengan host name akan menciptakan fully qualified domain name (FQDN) untuk setiap komputer. Sebagai contoh, jika terdapat fileserver1.detik.com, dimana fileserver1 adalah host name dan detik.com adalah domain name.

Bagaimana DNS Bekerja
Fungsi dari DNS adalah menerjemahkan nama komputer ke IP address (memetakan). Client DNS disebut dengan resolvers dan DNS server disebut dengan name servers. Resolvers atau client mengirimkan permintaan ke name server berupa queries. Name server akan memproses dengan cara mencek ke local database DNS, menghubungi name server lainnya atau akan mengirimkan message failure jika ternyata permintaan dari client tidak ditemukan. Proses tersebut disebut dengan Forward Lookup Query, yaitu permintaan dari client dengan cara memetakan nama komputer (host) ke IP address.

Cara kerja Domain Name Sistem

a) Resolvers mengirimkan queries ke name server
b) Name server mencek ke local database, atau menghubungi name server lainnya, jika ditemukan akan diberitahukan ke resolvers jika tidak akan mengirimkan failure message
c) Resolvers menghubungi host yang dituju dengan menggunakan IP address yang diberikan name server


Point-to-Point Protocol

Point-to-Point Protocol (sering disingkat menjadi PPP) adalah sebuah protokol enkapsulasi paket jaringan yang banyak digunakan pada wide area network (WAN). Protokol ini merupakan standar industri yang berjalan pada lapisan data-link dan dikembangkan pada awal tahun 1990-an sebagai respons terhadap masalah-masalah yang terjadi pada protokol Serial Line Internet Protocol (SLIP), yang hanya mendukung pengalamatan IP statis kepada para kliennya. Dibandingkan dengan pendahulunya (SLIP), PPP jauh lebih baik, mengingat kerja protokol ini lebih cepat, menawarkan koreksi kesalahan, dan negosiasi sesi secara dinamis tanpa adanya intervensi dari pengguna. Selain itu, protokol ini juga mendukung banyak protokol-protokol jaringan secara simultan. PPP didefinisikan pada RFC 1661 dan RFC 1662.


Serial Line Internet Protocol

Serial Line Internet Protocol dianggap berkaitan erat dengan pengertian berikut
Disingkat dengan SLIP. Sebuah protokol yang memungkinkan pemindahan data IP melalui saluran telepon. Alat bantu lainnya d`lam SLIP adalah PPP yang mendeteksi kesalahan dan konfigurasi. Sistem ini memerlukan satu komputer server sebagai penampungnya, dan secara perlahan-lahan akan digantikan oleh standar PPP yang memiliki kecepatan proses lebih tinggi.

 Internet Control Message Protocol (ICMP) 

adalah salah satu protokol inti dari keluarga. ICMP berbeda tujuan dengan TCP dan UDP dalam hal ICMP tidak digunakan secara langsung oleh aplikasi jaringan milik pengguna. salah satu pengecualian adalah aplikasi ping yang mengirim pesan ICMP Echo Request (dan menerima Echo Reply) untuk menentukan apakah komputer tujuan dapat dijangkau dan berapa lama paket yang dikirimkan dibalas oleh komputer tujuan. protokol internet. ICMP utamanya digunakan oleh sistem operasi komputer jaringan untuk mengirim pesan kesalahan yang menyatakan, sebagai contoh, bahwa komputer tujuan tidak bisa dijangkau.


POP3 (Post Office Protocol)
 POP3 (Post Office Protocol)
POP3 adalah kepanjangan dari Post Office Protocol version 3, yakni protokol yang digunakan untuk mengambil email dari email server. Protokol POP3 dibuat karena desain dari sistem email yang mengharuskan adanya email server yang menampung email untuk sementara sampai email tersebut diambil oleh penerima yang berhak. Kehadiran email server ini disebabkan kenyataan hanya sebagian kecil dari komputer penerima email yang terus-menerus melakukan koneksi ke jaringan internet.


IMAP (Internet Message Access Protocol)

 IMAP (Internet Message Access Protocol) adalah protokol standar untuk mengakses/mengambil e-mail dari server. IMAP memungkinkan pengguna memilih pesan e-mail yang akan ia ambil, membuat folder di server, mencari pesan e-mail tertentu, bahkan menghapus pesan e-mail yang ada. Kemampuan ini jauh lebih baik daripada POP (Post Office Protocol) yang hanya memperbolehkan kita mengambil/download semua pesan yang ada tanpa kecuali.


 SMTP (Simple Mail Transfer Protocol)

adalah suatu  protokol yang umum digunakan untuk pengiriman surat elektronik atau email di Internet. Protokol ini gunakan untuk mengirimkan data dari komputer pengirim surat elektronik ke server surat elektronik penerima.

Untuk menggunakan SMTP bisa dari Microsoft Outlook. biasanya untuk menggunakan SMTP di perlukan settingan :

   1. Email Address : contoh —> anda@domainanda.com
   2. Incoming Mail (POP3, IMAP or HTTP) server : mail.doaminanda.com
   3. Outgoing (SMTP) server : mail.domainanda.com
   4. Account Name : anda@domainanda.com
   5. Password : password yang telah anda buat sebelumnya

     HTTP (Hypertext Transfer Protocol)

HTTP (Hypertext Transfer Protocol) suatu protokol yang digunakan oleh WWW (World Wide Web). HTTP mendefinisikan bagaimana suatu pesan bisa diformat dan dikirimkan dari server ke client. HTTP juga mengatur aksi-aksi apa saja yang harus dilakukan oleh web server dan juga web browser sebagai respon atas perintah-perintah yang ada pada protokol HTTP ini.

Contohnya bila kita mengetikkan suatu alamat atau URL pada internet browser maka web browser akan mengirimkan perintah HTTP ke web server. Web server kemudian akan menerima perintah ini dan melakukan aktivitas sesuai dengan perintah yang diminta oleh web browser. Hasil aktivitas tadi akan dikirimkan kembali ke web browser untuk ditampilkan kepada kita.

HTTPS 
https adalah versi aman dari HTTP, protokol komunikasi dari World Wide Web. Ditemukan oleh Netscape Communications Corporation untuk menyediakan autentikasi dan komunikasi tersandi dan penggunaan dalam komersi elektris.

Selain menggunakan komunikasi plain text, HTTPS menyandikan data sesi menggunakan protokol SSL (Secure Socket layer) atau protokol TLS (Transport Layer Security). Kedua protokol tersebut memberikan perlindungan yang memadai dari serangan eavesdroppers, dan man in the middle attacks. Pada umumnya port HTTPS adalah 443.

Tingkat keamanan tergantung pada ketepatan dalam mengimplementasikan pada browser web dan perangkat lunak server dan didukung oleh algorithma penyandian yang aktual.

Oleh karena itu, pada halaman web digunakan HTTPS, dan URL yang digunakan dimulai dengan ‘https://’ bukan dengan ‘http://’

Kesalahpahaman yang sering terjadi pada pengguna kartu kredit di web ialah dengan menganggap HTTPS “sepenuhnya” melindungi transaksi mereka. Sedangkan pada kenyataannya, HTTPS hanya melakukan enkripsi informasi dari kartu mereka antara browser mereka dengan web server yang menerima informasi. Pada web server, informasi kartu mereke secara tipikal tersimpan di database server (terkadang tidak langsung dikirimkan ke pemroses kartu kredit), dan server database inilah yang paling sering menjadi sasaran penyerangan oleh pihak-pihak yang tidak berkepen


 SSH (Sucure Shell)

SSH adalah protocol jaringan yang memungkinkan pertukaran data secara aman antara dua komputer. SSH dapat digunakan untuk mengendalikan komputer dari jarak jauh mengirim file, membuat Tunnel yang terrenkripsi dan lain-lain. Protocol ini mempunyai kelebihan disbanding protocol yang sejenis seperti Telnet, FTP, Danrsh, karena SSH memiliki system Otentikasi,Otorisasi, dan ekripsinya sendiri. Dengan begitu keamanan sebuah sesi komunikasi melalui bantuan SSH ini menjadi lebih terjamin. SSH memang lebih aman dibandingkan dengan protocol sejenis, tetapi protocol SSH tatap rentan terhadap beberapa jenis serangan tertentu. Pada umumnya serangan ini ditunjukan Pada SSH versi pertama (SSH-1) yang memang memiliki tingkat keamanan yang lebih lemah daripada SSH versi kedua (SSH-2). Salah satu serangan pada SSH versi pertama adalah serangan MAN IN THE MIDDLE pada saat pertukaran kunci. Protocol SSH serta algoritma yang digunakan pada kedua versi SSH, lalu serangan-serangan yang terjadi pada SSH dan bagaimana SSH mengatasinya. Untuk meningkatkan keamanan pada protocol SSH dapat dilakukan dengan cara menggunakan kartu Kriptografi untuk autentifkasi.Telnet (Telecommunication network) adalah sebuah protokol jaringan yang digunakan di koneksi Internet atau Local Area Network. TELNET dikembangkan pada 1969 dan distandarisasi sebagai IETF STD 8, salah satu standar Internet pertama. TELNET memiliki beberapa keterbatasan yang dianggap sebagai risiko keamanan.



Telnet (Telecommunication network)

 Adalah sebuah protokol jaringan yang digunakan di koneksi Internet atau Local Area Network. TELNET dikembangkan pada 1969 dan distandarisasi sebagai IETF STD 8, salah satu standar Internet pertama. TELNET memiliki beberapa keterbatasan yang dianggap sebagai risiko keamanan.


 FTP ( File Transfer Protocol )

FTP ( File Transfer Protocol ) adalah sebuah protocol internet yang berjalan di dalam lapisan aplikasi yang merupakan standar untuk pentransferan berkas (file) computer antar mesin-mesin dalam sebuah internetwork. FTP atau protocol Transmission Control Protocol (TCP) untuk komunikasi data antara klien dan server, sehingga diantara kedua komponen tersebut akan dibuatlah sebuah sesi komunikasi sebelum transfer data dimulai. FTP hanya menggunakan metode autentikasi standar, yakni menggunakan User name dan paswordnya yang dikirim dalam bentuk tidak terenkripsi. Pengguana terdaftar dapat menggunakan username dan password-nya untuk mengakses ,men-dawnload ,dan meng- updlot berkas- berkas yang ia kehenaki. Umumnya, para pengguna daftar memiliki akses penuh terdapat berapa direkotri , sehingga mereka dapat berkas , memuat dikotri dan bahkan menghapus berkas. Pengguna yang belum terdaftar dapat juga menggunakan metode anonymous login,yakni dengan menggunakan nama pengguna anonymous & password yang diisi dengan menggunakan alamat e-mail. Sebuah server FTP diakses dengan menggunakan Universal Resource Identifier (URI) dengan menggunakan format ftp://namaserver. Klien FTP dapat menghubungi server FTP dengan membuka URI tersebut.

Tujuan FTP server adalah sebagai beikut :
1. Untuk men-sharing data.
2. Untuk menyediakan indirect atau implicit remote computer.
3. Untuk menyediakan tempat penyimpanan bagi User.
4. Untuk menyediakan tranper data yang reliable dan efisien.

FTP sebenarnya cara yang tidak aman untuk mentransfer file karena file tersebut ditransfesfer tanpa melalui enkripsi terlebih dahulu tapi melalui clear text. Metode text yang dipakai transfer data adalah format ASCII atau format binary. Secara Default, FTP menggunakan metode ASCII untuk transfer data. Karena Pengirimannya tanpa enkripsi, maka username,password,data yang ditransfer maupun perintah yang dikirim dapat dniffing oleh orang dengan menggunakan protocol analyzer (Sniffer). Solusi yang digunakan adalah dengan menggunakan SFTP (SSH FTP) yaitu FTP yang berbasis pada SSH atau menggunakan FTPS (FTP over SSL) sehingga data yang dikirim terlebih dahulu disana.

LDAP
LDAP (Lightweight Directory Access Protocol) adalah protokol perangkat lunak untuk memungkinkan semua orang mencari resource organisasi, perorangan dan lainnya, seperti file atau printer di dalam jaringan baik di internet atau intranet. Protokol LDAP membentuk sebuah direktori yang berisi hirarki pohon yang memiliki cabang, mulai dari negara (countries), organisasi, departemen sampai dengan perorangan. Dengan menggunakan LDAP, seseorang dapat mencari informasi mengenai orang lain tanpa mengetahui lokasi orang yang akan dicari itu.


SSL (Secure Socket Layer)

SSL (Secure Socket Layer) adalah arguably internet yang paling banyak digunakan untuk enkripsi. Ditambah lagi, SSL sigunakan tidak hanya keamanan koneksi web, tetapi untuk berbagai aplikasi yang memerlukan enkripsi jaringan end-to-end.
Secure Sockets Layer (SSL) merupakan sistem xang digunakan untuk mengenkripsi
pengiriman informasi pada internet, sehingga data dapat dikirim dengan aman. Protokol SSL mengatur keamanan dan integritas menggunakan enkripsi, autentikasi, dan kode autentikasi pesan. SSL protocol menyedian privasi komunikasi di internet. SSL tidak mendukung fileencryption, access-control, atau proteksi virus, jadi SSL tidak dapat membantu mengatur data sensitif setelah dan sebelum pengiriman yang aman.
Protokol SSL terdiri dari dua sub-protokol: SSL record protocol dan SSL handshake
protocol. SSL record protocol mendefinisikan format yang digunakan untuk mentransmisikan data. Sedangkan SSL handshake protocol melibatkan SSL record protocol untuk menukarkan serangkaian pesan antara SSL enabled server dan SSL enable client ketika keduanya pertama kali melakukan koneksi SSL. Pertukaran pesan tersebut digunakan untuk memfasilitasi tindakan sebagai berikut :
• Autentikasi dari server ke klien
• Mengizinkan klien dan server untuk memilih algoritma kriptografi atau sandi, yang
mendukung komunikasi keduanya.
• Autentikasi dari klien ke server.
• Menggunakan teknik enkripsi public key untuk membuka data yang dienkripsi
• Membuat enkripsi koneksi SSL

 PERBEDAAN TCP dan UDP


TCP (Transmission Control Protocol) adalah protocol yang connection-oriented, yang berarti komunikasi yang melewatinya membutuhkan handshaking untuk mengatur koneksi end-to-end. Koneksi dapat dibuat dari client ke server, dan kemudian banyak data dapat dikirimkan melalui konesi itu.

TCP memiliki ciri-ciri yaitu sebagai berikut:
  • Terpercaya
    TCP mengatur pesan acknoweledegment, retransmission, dan timeout. Banyak usaha untuk mengirimkan pesan yang dibuat dengan terpercaya. Jika hilang ditengah jalan, server akan meminta kembali bagian yang hilang. Di TCP, tidak ada data yang hilang atau dalam beberapa kasus timeouts, koneksi didrop.
  • Terurut
    Jika dua pesan dikirimkan sepanjang koneksi, satu demi satu, pesan yang pertama akan mencapai aplikasi penerima pertama. Ketika paket data tiba di urutan yang berbeda, layer TCP menahan data selanjutnya sampai data yang baru saja datang dapat di urutkan kembali dan dikirimkan ke aplikasi.
  • Heavyweight
    TCP meminta tiga paket hanya untuk mensetup socket, sebelum beberapa data aktual dapat dikirimkan. Ini mengatur koneksi, reliability, dan congestion control. Ini adalah protocol transport yang besar yang didesain di atas IP
  • Streaming
    Data dibaca sebagai “stream”, dengan tidak membedakan dimana satu paket berakhir dan yang lin dimulai. Paket mungkin dipisah atau digabungkan ke dalam data streams yang lebih besar atau lebih kecil secara sewenang-wenang.
UDP (Unit Datagram Protocol) adalah protocol connectionless message-based yang lebih sederhana. Di protocol connectionless, tidak ada usaha yang dibuat untuk koneksi end-to-end. Koumikasi dicapai dengan mengirimkan informasi satu arah, dari source ke destination tanpa mengecek untuk melihat apakah tujuan masih ada, atau apakah koneksi disiapkan untuk menerima informasi. Paket UDP melewati jaringan dalam unit-unit yang berdiri sendiri.
Ciri-ciri UDP adalah:
  • Tidak terpercaya
    Ketika pesan dikirimkan, tidak dapat diketahui apakah akan sampai tujuan. Paket dapat hilang di jalan. Tidak ada konsep acknoweledgment, retransimission, dan timeout.
  • Tidak terurutJika dua pesan dikirimkan ke penerima yang sama, urutan sampainya tidak dapat diprediksi.
  • Lightweight
    Tidak ada pemesanan pesan, tidak ada pelacakan koneksi, dll. Layer transport yang kecil yang didesain di atas IP.
  • Datagrams
    Paket yang dikirimkan secara individu dan dijamin akan utuh jika sampai. Paket-paket memiliki batas-batas yang pasti, dan tidak dipisan dan dibagi ke dalam data stream yang mungkin ada.


Mekanisme koneksi antara 2 komputer dengan menggunakan TCP
  1. Colokkan kabel UTP yang sudah dikonfigurasi dengan kabel cross ke port LAN card komputer pertama Anda.
  2. Jika Anda menggunakan Windows XP,buka Control Panel »» Network and Internet Connections »» Network Connections.
  3. Jika Menngunakan Windows 7 atau Vista, buka Control Panel. Pada icon Network and Internet, klik tulisan View Networks Status and Task.

  4. Network status

  5. Selanjutnya akan muncul jendela Networks and Sharing Center. Pada sisi sebelah kiri jendela ini, klik tulisan Change Adapter Setting

  6. Setting LAN Card

  7. Klik kanan pada Networkd Card Anda dan pilih properties.

  8. Konfigurasi LAN Card

  9. Pada jendela Local Area Connection Properties, pilih Internet Protocol (TCP/IP) pada Windows XP atau Internet Protocol Version 4 (TCP/IPv4) pada Windows 7 dan Vista. Kemudian klik tombol properties.

  10. LAN Properties

  11. Pada jendela properties yang muncul, pilih opsi Use the followinf IP Address dan isikan dengan 192.168.0.1 pada IP Adrees, 255.255.255.0 pada Subnetmask. Input yang tersisa bisa Anda kosongkan.

  12. Set IP Address

  13. Klik OK untuk menyimpan setting dan klik tombol OK juga pada Local Area Connection Properties
Selanjutnya agar kedua komputer tersebut bisa berhubungan, maka Workgroup dari komputer-komputer tersebut haruslah sama. Untuk itu, berikanlah nama Workgroup yang sama pada kedua komputer tersebut. Caranya sebagai berikut:
  1. Untuk pengguna Windows XP, bukalah system Properties dengan mengklik kanan icon My Computer dan pilih properties. Anda juga menekan tombol kombinasi keyboard Win + Break.
  2. Bagi Anda pengguna windows 7, caranya sedikit sama yaitu buka system properties dengan cara seperti pada windows XP. Pada jendela yang muncul klik tulisan Change Setting pada bagian Computer name, domain, and workgroup setting.
  3. Rubah nama computer
  4. Pada jendela System Properties, baik Windows XP, Vista ataupun Windows 7, klik tombol Change.

  5. System properties

  6. Di jendela berikutnya berikan nama untuk komputer 1 dengan nama yang diinginkan. Misalkan DK-1. Dan berikan nama dari workgroup Anda. Contonya Dunia Komputer.

  7. Nama computer

  8. Klik OK dan klik OK juga pada jendela System Properties.
Agar perubahan yang baru Anda lakukan berpengaruh pada system maka diperlukan proses restart. Untuk itu retart komputer Anda. Lakukanlah langkah-langkah yang sama dengan diatas untuk melakukan konfigurasi Network Card dan merubah nama komputer serta workgroup pada komputer kedua. Namun, bedanya pada komputer 2, IP address yang diberikan adalah 192.168.0.2. Subnetmask sama yaitu 255.255.255.0. Sedangkan Nama komputer harus berbeda. Misalkan berikan nama DK-2. Namun, workgroup haruslah sama.
Untuk mengetahui apakah kedua komputer tersebut sudah terhubung lakukanlanh ping dari komputer 1 ke komputer 2 atau sebaliknya. Caranya sebagia berikut:
  1. Buka Command Prompt dengan menekan tombol keyboard Win + R.
  2. Pada CMD ketik perintah “ping IP Address”. Ip Addrees diisi dengan IP komputer yang ingin di ping. Jika Anda melakukan ping dari komputer 1, maka IP address diisi dengan IP komputer 2. Begitu juga sebaliknya. Contoh perintah ping dari komputer 1 ke komputer 2:
    ping 192.168.0.2
  3. Jika koneksi antar kedua komputer tersebut berhasil maka hasilnya akan seperti ini:
    Pinging 192.168.0.2 with 32 bytes of data:
    Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
    Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
    Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
    Reply from 192.168.0.2: bytes=32 time<1ms TTL=128
    Ping statistics for 192.168.0.2:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
    Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms
  4. Jika hasilnya seperti ini:
    Pinging 192.168.0.2 with 32 bytes of data:
    Request time out
    Request time out
    Request time out
    Request time out
    Ping statistics for 192.168.0.2:
    Packets: Sent = 4, Received = 0, Lost = 4 (100% loss)
    Berarti kedua komputer tersebut belum terkoneksi. Cobalah memeriksa apakah kabel sudah terhubung dengan benar atau mungkin saja ada kabel yang putus.
Jika semuanya sudah beres dan hasil ping sudah bagus, ini artinya Anda berhasil mengubungkan 2 komputer tersebut. Pada artikel berikutnya Dunia Komputer akan membahas bagaimana melakukan sharing folder, printer dan internet pada kedua komputer tersebut.
Sumber :